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Abstract

In this paper we use the constructal method to determine the optimal distribution and sizes of discrete heat sources in

a vertical open channel cooled by natural convection. Two classes of geometries are considered: (i) heat sources with

fixed size and fixed heat flux, and (ii) single heat source with variable size and fixed total heat current. In both classes,

the objective is the maximization of the global thermal conductance between the discretely heated wall and the cold

fluid. This objective is equivalent to minimizing temperature of the hot spot that occurs at a point on the wall. The

numerical results show that for low Rayleigh numbers (�102), the heat sources select as optimal location the inlet plane

of the channel. For configuration (i), the optimal location changes as the Rayleigh number increases, and the last

(downstream) heat source tends to migrate toward the exit plane, which results in a non-uniform distribution of heat

sources on the wall. For configuration (ii) we also show that at low and moderate Rayleigh numbers (RaM � 102 and

103) the thermal performance is maximized when the heat source does not cover the entire wall. As the flow intensity

increases, the optimal heat source size approaches the height of the wall. The importance to free the flow geometry to

morph toward the configuration of minimal global resistance (maximal flow access) is also discussed.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Nature strikes us with countless examples of how

flow systems reach equilibrium by selecting paths of least

resistance for the currents that flow through them. The

flows are of many kinds: fluid, heat, species, etc. [1].
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The maximization of the approach to equilibrium is re-

flected in the shape, structure and speed of the flowing

system.

The optimal shapes and structures that we see in nat-

ure are not obvious in engineering. The reason is that in

engineering until recently, design was an art form. It re-

lied on postulated (assumed) configurations based on

intuition, handbooks and rules of thumb. Nature, on

the other hand, constantly seeks and finds better archi-

tectures, en route to what in biology is recognized as

the principle of the �survival of the fittest�. Constructal
ed.
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Nomenclature

C global thermal conductance, Eq. (12)

CM modified global thermal conductance, Eq.

(13)

cP specific heat at constant pressure, Jkg�1K�1

D wall-to-wall spacing, m

D0 size of heat source, m, Fig. 1

g gravitational acceleration, ms�2

H height, m

k thermal conductivity, Wm�1K�1

Ld length of extended inflow domain, m

Lu length of extended outflow domain, m

L0 size of heat source, m, Fig. 10

N number of heat sources

P pressure, Nm�2

Pr Prandtl number

q0 heat current through one heat source,

Wm�1

q000 heat flux through the heat source surface,

Wm�2

Q 0 total heat flow, Wm�1

R residual vector

RaM modified Rayleigh number, Eq. (14)

Ra
*

Rayleigh number

S spacing, m

Tmax maximal wall temperature, K

T0 inlet fluid temperature, K

u horizontal velocity component, ms�1

u solutions vector

v vertical velocity component, ms�1

x, y Cartesian coordinates, m

Greek symbols

a thermal diffusivity, m2s�1

b coefficient of volumetric thermal expansion,

K�1

dT thermal boundary layer thickness, m

q density, kgm�3

m kinematic viscosity, m2s�1

l viscosity, Nsm�2

Subscripts

i iteration index

max maximum when N = 1

2m maximum when N = 2

3m maximum when N = 3

n mesh index

Superscripts

� dimensionless variables

^ dimensionless variables
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theory [1,2] has shown that there is no difference be-

tween the principle-based generation of configuration

in natural and artificial flow systems, provided that the

artificial structures are endowed with the freedom to

morph under finiteness constraints.

The field of heat transfer augmentation has shown

repeatedly how the generation of flow geometry works,

and how geometry helps the flow system achieve its pur-

pose. Fins, staggered arrangements, and ribbed channels

come from the push toward greater access for heat cur-

rents in morphing geometries. In return, the new config-

urations use the available space to the maximum—they

pack maximum heat transfer density [3–8].

The objective of the research reported in this paper is

to determine the optimal distribution of discrete heat

sources in an open vertical channel with natural convec-

tion. This problem has practical applications in the ven-

tilation cooling of electronics and solar installations.

These are the self-induced flows, which are caused by

the chimney effect. Previous studies have shown the

importance of the chimney effect in heat transfer aug-

mentation [9–18]. In such studies, the importance of

locating the heat source close to the channel entrance

was recognized. However, the optimal placement of

multiple heat sources in chimney flow was not

considered.
Two recent studies [7,8] showed how to arrange dis-

crete heat source mounted in a horizontal wall with

forced convection, and in a vertical wall with natural

convection. Both papers conducted a theoretical and

numerical analysis showing that a non-uniform distribu-

tion of heat sources is the best configuration. Addition-

ally, these studies showed that the heat source migrates

toward the leading edge of the wall as the flow becomes

stronger. In the present paper we consider two related

problems: (i) how to arrange discrete heat sources of

fixed size and heat flux, and (ii) how to arrange a single

heat source of variable size and fixed total heat current

in a vertical open channel in natural convection assisted

by the chimney effect.
2. Mathematical formulation

Consider the two-dimensional asymmetrically dis-

crete heated vertical channel shown in Fig. 1. The chan-

nel is cooled by a cold single-phase fluid, which is drawn

into the channel at T0. The coolant is a Newtonian fluid

with constant properties. Additionally, the flow is as-

sumed incompressible and the Oberbeck–Boussinesq

approximation is used: the temperature difference be-

tween any hot spot temperature Tmax and the cold fluid



Fig. 1. Multiple length scales of the non-uniform distribution

of finite-size heat sources on a vertical channel.
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at T0 is assumed small enough so that changes in density

are taken into account only in the buoyancy term of the

vertical momentum equation. Such considerations lead

to the following differential system:

ou
ox

þ ov
oy

¼ 0 ð1Þ

q u
ou
ox

þ v
ou
oy

� �
¼ � oP

ox
þ lr2u ð2Þ

q u
ov
ox

þ v
ov
oy

� �
¼ � oP

oy
þ lr2vþ qgbðT � T 0Þ ð3Þ

qcP u
oT
ox

þ v
oT
oy

� �
¼ kr2T ð4Þ
where $2 = o2/ox2 + o2/oy2. The variables and the fluid

properties are defined in the nomenclature. Eqs. (1)–(4)

were non-dimensionalized by using the variables

ðx̂; ŷ; bD; bD0; bSiÞ ¼
ðx; y;D;D0; SiÞ

H
ð5Þ
ðû; v̂Þ ¼ ðu; vÞ
ða=HÞRa1=2
 Pr1=2

ð6Þ

bT ¼ T � T 0

q000H=k
ð7Þ

bP ¼ P

ðla=H 2ÞRa1=2
 Pr1=2
ð8Þ

where Ra
*
is the Rayleigh number based on H and the

heat flux applied on each discrete heat source

Ra
 ¼
gbq000H

4

mak
ð9Þ

The numerical domain is composed of an extension

upstream of the inlet (Lu · D), the main channel

(D · H), and an extension downstream of the outlet

(D · Ld). The flow and temperature fields were simu-

lated for Pr = 0.7 in the range 102 6 Ra
*
6 104. The inlet

and outlet extensions eliminate the need to specify inac-

curate velocity or temperature profiles at the entrance

and exit of the channels [19]. Instead, velocity and tem-

perature profiles are imposed on the extremes of the do-

main, i.e., on the inlet and outlet planes of the

extensions. The lengths of the inlet and outlet extensions

(Lu, Ld) were selected such that they do not influence the

variation of the hot spot temperature for the geometric

configurations that were simulated. The numerical tests

were performed by comparing the variation of the hot

spot temperature ðbT maxÞ for different values of bLu andbLd for a fixed configuration (i.e., fixed values of bD, N

and bD0) through the Rayleigh number range considered

in this study (102 < Ra
*
< 104). By fixing bLu ¼ 0, for

example, we could vary the outlet extension in the range

0 6 bLd 6 1 by using a 0.1 step in bLd. The change in bT max

between sequential simulations was recorded. The same

procedure was adopted for bLu. The tests showed that the

solution becomes relatively insensitive (i.e., the total

heat transfer rate changes by less than 0.5%) when the

lengths Lu and Ld are increased from 0.5H to H. The

extensions determined in this manner and used in this

study are Lu = Ld = 0.5H. The boundary conditions are

ab : û ¼ 0 and bT ¼ 0

ac; bd and fi : û ¼ ov̂
ox̂

¼ obT
ox̂

¼ 0

eh :
oû
ox̂

¼ ov̂
ox̂

¼ obT
ox̂

¼ 0

hi :
oû
oŷ

¼ ov̂
oŷ

¼ obT
oŷ

¼ 0

ce : û ¼ v̂ ¼ 0;
obT
ox̂

¼ 0 or q̂ ¼ q
q000

¼ 1

fd : û ¼ v̂ ¼ 0;
obT
ox̂

¼ 0

ð10Þ



Fig. 2. Maximization of the global conductance when only one

heat source is present.
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The numerical simulations were conducted using a

commercial CFD package based on the finite element

method [20]. The numerical domain was discretized

non-uniformly using quadrilateral elements with 9 nodes

each. The fully coupled approach, which solves all con-

servation equations in a simultaneous coupled manner,

was used. The explicit appearance of the pressure was

eliminated based on the penalty function, with an error

factor of 10�8. The non-linear algebraic equations

resulting from the upwind finite element scheme were

solved by successive substitutions followed by the New-

ton–Raphson scheme. The convergence criterion was

controlled by two parameters: the solution vector ui
and the residual vector R(ui)

jjui � ui�1jj
jjuijj

6 0:001 and
jjRðuiÞjj
jjR0jj

6 0:001 ð11Þ

where k Æ k is the Euclidean norm, i is the iteration index,

and R0 is a reference vector.

Due to the numerous simulations and the optimiza-

tion objective of this work, the grid used was carefully

tested and selected. The grid accuracy test was per-

formed in the same way as for the numerical inlet and

outlet extensions. The number of nodes was fixed in

one direction and varied in the other until the numerical

stability of bT max is reached. The grid convergence re-

quired that bT max changes by less than one percent when

the grid is doubled in that direction. This procedure was

used for both x̂ and ŷ directions. Refinement tests

showed that the ideal grid is a function of the Rayleigh

number, and is non-uniform in ~x direction, with the

smaller elements located close to the discretely heated

vertical wall. The mesh accuracy study showed that the

use of 101 nodes per unit of lengthH guarantees changes

in the Tmax solution that satisfy the grid convergence cri-

terion throughout the range 102 6 Ra
*
6 104.
Fig. 3. The maximized global conductance that corresponds to

the optimized location of one heat source.
3. Optimal spacings between heat sources

The optimal location of the discrete heat sources was

determined by maximizing the global thermal conduc-

tance of the flow system,

C ¼ Q0

kðTmax � T 0Þ
¼ N bD0bT max

ð12Þ

whereQ 0 = Nq 0 is total heat current, k is the thermal con-

ductivity, and Tmax � T0 is the maximum excess temper-

ature reached at a point (hot spot) on the left vertical wall

of the channel. The position of the hot spot is free to

vary, and is one of the results of the numerical optimiza-

tion. When the number and size of heat sources are fixed

(N, bD0), to maximize C is the same as minimizing bT max.

Fig. 2 shows how the maximum temperature varies

with the position of the heat source attached to vertical

channel when the total heat flow is fixed. The optimal
location is the one in which the heat source is located

at the entrance of the channel ðbS 0;opt ¼ 0Þ. The same

trend was found for all the other configurations in the

range 102 6 Ra
*
6 104 and 0:05 6 bD0 6 0:2. The reason

for this is that the thickness of the boundary layer in-

creases with the y-coordinate: the best place for the sin-

gle heat source is the region with the thinner boundary

layer, i.e., the smallest resistance.

Fig. 3 reports the maximized global conductance that

corresponds to the optimal location of a single heat

source (N = 1), bS 0;opt ¼ 0. The optimization illustrated

in Fig. 2 for bD0 ¼ 0:1 was also performed for bD0 ¼ 0:2
and 0.05 in the Ra

*
range 102–104. When Ra

*
< 103, dif-

fusive heat transfer is predominant, and Cmax is affected

weakly by bD0 and Ra
*
. When Ra

*
> 103, convection be-

gins to dominate, and Cmax increases appreciably withbD0 and Ra
*
.

Next, we increased the complexity, and considered

two heat sources of equal strength ðbD0Þ installed on
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the left wall of the channel. Consequently two degrees of

freedom (bS 0, bS 1) have to be accounted for in order to

determine the optimal configuration. The maximized

conductance for this configuration is labeled C2m. The

optimal configuration was found by performing two

nested loops: first bS 0 was fixed, and C was maximized

with respect to bS 1, resulting in Cmax. In the outer loop,

the inner loop was repeated for several values of bS 0,

until Cmax reached its highest value, C2m.

As in the cases where only one heat source is active in

the channel (Fig. 2), for N = 2 we found that bS 0;opt ¼ 0

throughout the range 102 6 Ra
*
6 104. The new feature

is that the second heat source moves along the left wall,

depending on bD0 and Ra
*
. As shown in Fig. 4, as Ra

*

increases, the flow gains intensity and the second heat

source migrates toward the exit plane of the channel.

At lower values of Ra
*
, the diffusion is the dominant

path chosen by heat flow, consequently, the second heat

source finds its own optimal location in regions with

thinner boundary layer.
Fig. 4. The optimal location two heat sources.

Fig. 5. The maximized global conductance that corresponds to

the optimized location of two heat sources.
Fig. 5 summarizes the maximized global conductance

results obtained with the two heat sources spaced opti-

mally in Fig. 4. It is important to note that each curve

shows a higher conductance than the curve for the same

Ra
*
and bD0 in Fig. 3. This means that increased opti-

mized complexity yields higher performance.

Let us assume that total heat current is held constant.

For N bD0 ¼ 0:1 and Ra
*
= 104, Fig. 3 shows that

Cmax = 0.88 when only one heat source is presentbD0 ¼ 0:1. For the same heat flow, Fig. 5 shows that

C2m = 0.99 when two optimally placed heat sources

of strength bD0 ¼ 0:05 are attached to the left wall. In

conclusion, optimized complexity increases perfor-

mance.

The distribution of three heat sources was optimized

as shown in Fig. 6. The lower heat source always mi-

grates toward the entrance of the channel. The new as-

pect is that when N = 3 the second heat source must

also be located as close as possible to the entrance plane,

for all values of bD0. This means that bS 0;opt ¼ bS 1;opt ¼ 0.

In conclusion, the optimal spacing between heat sources

with finite length exists only in configurations with two

or more heat sources, N P 2, and occurs between the

heat sources positioned closest to the exit plane. For

example, when for N = 2 we have bS 0;opt ¼ 0 andbS 1;opt 6¼ 0; for N = 3, the optimal spacings arebS 0;opt ¼ bS 1;opt ¼ 0 and bS 2;opt 6¼ 0. Another interesting as-

pect is that, for a fixed value of bD0 the curves not only

have the same trend, but also the same order of magni-

tude, bS 1;N¼2 ffi bS 2;N¼3.

Fig. 7 shows the effect of the number of heat sources

on the maximized global conductance for N = 1, 2 and 3

when bD0 ¼ 0:05. The maximized global conductance in-

creases with N. Diminishing returns are also evident: the

difference between the maximized global conductance of

two configurations with different N�s decreases as N in-

creases. The same behavior is shown for bD0 ¼ 0:1 and

0.2 in Figs. 8 and 9, respectively.
Fig. 6. Optimal location of three heat sources.



Fig. 7. The maximized global conductance that corresponds to

the optimized location of three heat sources, bD0 ¼ 0:05.

Fig. 8. Effect of N on the maximized global conductance,bD0 ¼ 0:1.

Fig. 9. Effect of N on the maximized global conductance whenbD0 ¼ 0:2.
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4. Optimal intensity and position of a single heat source

In this section we consider a new configuration in or-

der to investigate the effect of the size and position of a

single heat source in natural convection. This configura-

tion is shown in Fig. 10. Unlike in the preceding section,

where each heat source had a fixed size bD0 that dissi-

pated q̂00 ¼ 1, this time the only heat source present

has a variable size 0 < bL0 < 1 and a fixed total heat cur-

rent q̂0 ¼ q0=q00 ¼ 1. This new constraint enables us to

eliminate the numerator of Eq. (12) and define a modi-

fied global thermal conductance

CM ¼ q0

kðTmax � T 0Þ
¼ 1eT max

ð13Þ

where eT max is the maximum dimensionless temperature

based on the heat current dissipated by the heat source,eT ¼ Tmaxk=q00. The remaining boundary conditions

introduced in Eq. (10) continue to hold. The flow

strength is indicated by a modified Rayleigh number,

which is based on the heat source strength,

RaM ¼ gbq00H
3

mak
ð14Þ

It is worth mentioning that the existence of an opti-

mal heat source length may be anticipated intuitively

by a skilled designer, who is able to �see� that an
Fig. 10. Geometric parameters of a channel with single heat

source of variable intensity.
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optimum must exist between two extreme configurations

that obey the same constraint. Intuition should not be

misinterpreted as optimal design, because the latter

can only be the result of an optimization process—the

result of principle. Nevertheless, in principle-based opti-

mization a premium is put on intuition (strategy) that

leads more directly to optimal and nearly optimal con-

figurations. The organization and teaching of strategy

is one of the missions of constructal theory and design

[1,2].

The two extremes are as follows. Because the heat

current is fixed, the hot spot temperature increases

greatly as bL0 ! 0. On the other hand a large heat source

ðbL0 ! 1Þ means a thick boundary layer, and conse-

quently, a large thermal resistance. The competition be-

tween these two effects is confirmed in Fig. 11. For all

the bS 0 values considered, the optimal heat source lengthbL0;opt is always smaller than (1� bS 0), meaning that when
Fig. 11. Effect of the heat source size and position on the global

thermal performance.

Fig. 12. Optimal heat source length and maximum global

thermal performance of a channel heated by a single heat

source of variable size.
RaM = 103 the end of an optimized heat source never

reaches the exit plane of the channel.

Fig. 12 summarizes the results for the optimal heat

source length bL0;opt and the maximum thermal global

conductance versus the modified Rayleigh number. Note

that bL0;opt approaches 1 as the Rayleigh number in-

creases. In the limit of high RaM the flow is strong en-

ough to �shave� the hot spot temperature, weakening

the importance of the thickness of the boundary layer.

In the limit of low Rayleigh numbers (e.g., RaM � 102)

diffusion starts to dominate the heat transfer process,

and consequently bL0;opt ! 0.
5. Conclusions

In this paper we showed numerically that the spac-

ings between discrete heat sources of fixed size and heat

flux attached to an open channel with natural convec-

tion can be optimized for maximal global thermal con-

ductance. However, unlike in previous studies where

the optimal spacing between heat sources in enclosures

with natural convection and channels with forced con-

vection decreases with the flow strength [7,8], in open

channels the optimal spacing between heat sources in-

creases with the Rayleigh number. In addition, finite-

length spacings are found only in configurations with

two or more heat sources, and they occur only between

the heat sources positioned closest to the exit plane of

the open channel. We summarized the optimal spacing

between discrete heat sources in channels with forced

or natural convection and in enclosures in natural con-

vection as shown in Table 1.

The present numerical results showed that the global

thermal conductance C increases with Ra*, bD0 and N.

Diminishing returns are evident as complexity increases:

the stepwise gain in C decreases as N increases. Most

important is that for a fixed heated coverage area

NbD0, the global thermal performance increases as the

number of optimally positioned heat source placed in

the open channel increases.

In the second part of the paper, we showed that the

position and size of a single discrete heat source with a

fixed total heat current in an open channel can also be

optimized for maximal global thermal performance.

According to numerical results in the range

102 < RaM < 104, the optimal spacings are bS 0;opt ¼ 0

and bL0;opt < ð1� bS 0Þ. The downstream edge of a heat

source never touches the exit plane of the open channel.

In summary, the main message delivered by the pres-

ent paper is that optimized complexity is a promising

feature, even though diminishing returns set in as com-

plexity increases. Optimized complexity is one of the re-

sults of the maximization of global performance in a

morphing system. Optimized complexity must not be

confused with maximized complexity [2].



Table 1

The optimal spacing between discrete heat sources in chimney flow

Natural convection Forced convection

Open channels Enclosures Open channels [8]

N = 1 eS0;opt ¼ 0 eS0;opt P 0 eS0 ¼ 0

N = 2 eS0;opt ¼ 0 eS0;opt P 0 eS0;opt ¼ 0eS1;opt P 0 eS1;opt P 0 eS1;opt P 0eS1 increases with Ra
*

eS0;opt, eS1;opt decrease with Ra
*

eS1;opt decreases with Re

N = 3 eS0;opt ¼ 0 eS0;opt P 0 eS0 ¼ 0eS1;opt ¼ 0 eS1 P 0 eS1 P 0eS2;opt P 0 eS2 P 0 eS2 P 0eS2;opt increases with Ra
*

eS0;opt, eS1;opt decrease with Ra
*

eS1;opt, eS2;opt decrease with Re
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The relationship between optimized complexity and

global performance hinges on the freedom to change

the configuration [21]—performance increases with the

ability of the system to morph, in spite of global con-

straints. Freedom is to morph good design performance.
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